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Optimizatio3n algorithmsn on random graphs

D. G. Kelly* and D. T. A. Welsh

I. Introduction.

Let G be a graph on vertices 0, 1, .. , n-1. We consider two 'algorithms'

which start at an arbitrary vertex, move at each step to a lower-numbered

neighboring vertex, and stop when they reach a sink, i.e. a vertex with no

lower-numbered neighbor:

The greedy algorithm moves from a given vertex to the lowest-numbered

neighbor;

The random algorithm moves from a given vertex to a vertex chosen at

random from the lower-numbered neighbors,

We are interested in the behavior of these two algorithms on random

graphs. We use the model of random graphs in which each of the (2) edges is

present or absent wilh probabilities p and q=-p respectively, independently of

the other edges. Such a random graph will be called a Bern(n,p) graph. We

will consider the following random variables:

Sn, the number of sinks in a Bern(np) graph;

Gk, the number of steps from vertex k to a sink using the greedy algorithm

on a Bern(np) graph;

R k, the number of steps from vertex k to a sink using the random algorithm

on a Bern(np) graph.

These considerations are motivated by probabilistic analysis of linear

programming, which attempts to reconcile the widely-observed efficiency of the

Rusearch slport-d bij OM Grant No, NIA01-76-C-0550.



ii Abstract

We consider random graphs on vertices 0, 1, 2, ... , n in which each edge,

independent of the others, is present with probability p and absent with

probability q=l-p. On such a graph we consider two different random walks

starting with vertex n, moving at each step from a vertex to a lower-numbered

neighbor, and stopping when they reach either vertex 0 or a sink, a vertex with

no lower-numbered neighbor. These walks are simplified attempts to reproduce

probabilistically the behavior of the simplex algorithm on linear programs.

We derive some simple asymptotic results on the distribution of the number

of sinks in a random graph, and also on the distributions of the numbers of

steps needed by each of the two random walks.
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simplex algorithm with the existence of problems on which it is exponentially

inefficient.

If a linear program in d variables with m constraints is generated at

random from one of a wide class of distributions EDICT], its feasible region is

with probability one a d-dimensional polyhedron that is simple (each vertex has

exactly d neighbors), in which no two vertices have the same objective value.

Thus it is possible to number the vertices O, I, #.., n-i so that 0 is the

optimal vertex and so that from any vertex, any simplex pivot moves to a

lower-numbered neighboring vertex.

In another approach to probabilistic analysis IKI, one considers a fixed

linear program and regards the simplex algorithm as a random walk on the graph

of its feasible region which moves always in the direction of improvement in

objective value. This is obviously the motivation for the random algorithm

described above.

Our graph-algorithm models fail to match the above situations in two

respects. First, the random graphs generated are not regular as are the graphs

of simple polyhedra. This is a relatively minor defect, however: by proper

choice of p and n one can adjust the average degree so that the actual vertex

degrees will be close to d; and one feels that it is not the regularity, but

rather the fact that the vertex degrees are bounded below, that contributes to

the efficiency of pivoting procedures. Second, and more important, the random

graphs generated will in general have many sinks, while the polyhedron graphs

have only one. Nevertheless we feel that an investigation of the behavior of

such algorithms on graphs may shed some light, at least on the combinatorial

reasons of the simplex algorithm's efficiency (as opposed to reasons related to

convexity).
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Another difference between random graphs and random linear programs is

that the former have a fixed number of vertices (and random vertex degree)

while the latter have fixed vertex degree but a random number of vertices, The

distribution of the number n of vertices is not known, although one has [Ilee]

(m-d)(d-1)+2 n < ( m-a)+ ( m-b)- -m-d + m-d

(where a and b are, respectively, the greatest integers in (d+1)/2 and

(d+2)/2); and for a certain class of distributions on polyhedra with m facets

in d dimensions [CKT

E(n) - (cd) d/2m as m -> a for large d

where c is a constant independent of d and m#

In a Bern(n,p) graph the average vertex degree is approximately np, and so

we might be interested in the case of large n and p = Pn satisfying
rd/2

np'd and n"d

iet

n (np) npI2
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II. Sinks in random acyclic directed graghs.

A. Let G be a Bern(n,p) graph with vertices 0.1 It.too n-i, and regard

any edge as directed from the higher- to the lower-numbered vertex. A vertex

of outdegree zero is a sink; we let S =Sn, be the number of sinks in Go (S

is at least 1 because vertex 0 must be a sink.) Define random variables X.
I

(j=0,....n-1) by

1 if jis asinkt

0 if not.

So S = 11 X., the X. are independent, and

EX. =Pr(X.=1)= 3 (1

It follows immediately that the characteristic function and the probability

generating function of S are, respectively,

iets) = ,n- 1  (i~et)q3),CPSM VeJ=O e

rr (u) E(u5  
= QT" (- (I -U)q.

We also have

ES = 1+q+q 2 +6#6+ n-l = Q -q n)/pI-

and, since VX. = 0(-q) and the X. are independent,
n-i n -

VS = q(l-q nI)(l-q n)(1-q2)-I

a d2 
n-I -1I n -1

Notice also that S is asymptotically normal for large no

B. Now we consider p =p1,t q = = 1n as functions of n and look at

the behavior of S = S n as n increases for various orders of magnitude of n

1o If p,.n tends to a constant p (O~p~l), then ES n approaches 1/p and VS n

approaches q/p(l~q) (where q1l-p)t and the distribution of Sn tends to the

normal distribution with these parameters. (In general# if pn is bounded away
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from O, then ESn - nIPn and VSn - qn/Pn 1 +%) both approach zero.)

2. If pn -> 0 as n -> m, then VSn/(ES )2 -) 0 also, and it follows that

S /ES - I in probability. We consider the asymptotic behavior of ES for an n n

few growth rates of pn'

a. If p = (log n)/n, then

ESn - (n/log n)(1 - (t-(log n)/n)n)

(n/log n)(1 -n - )

n/log n.

b. If npn --> mr (O(CcD), then
ESn ~u pn$-I a - (-P n~n

p-l e -  n

(-e n/a.

c. If npn -- 0 but n(k+l)/k --) o (O<o<C), then since
ES =n-( n)p 2_

n 2) p+( 3

and since the partial sums in this expression alternately over- and

underestimate ESn , eventually ESn is between

n -( n)p +-o+(kn)p k-1
2- k

and
n -(n~ -,_..+(kp +(~~ p k-il- n k

n n-k
and the last term on the right approaches +ck as n - c.
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III. Number of steoneeded by greedy Algorithm.

Again fix n, pt and k (k = 0,1, ...tn- 1); Gk is the number of steps from k

to a sink using the greedy algorithm on a Bern(n,p) graph.

Vertex k is a sink, and hence G = 0 with probability qk ohris h

first step is to vertex j with probability pq1 (j =Ot It...,Pk-1)* Consequently

the characteristic function of G k is

(tO) E(eitG W= qk + 5:k-1 j M~e t(l+G i)te k q -j=1 p

iLe.

qk +eit-k- I
(Pkt j= d + (t) (2)

Replacing k by k+1 in (2) and subtracting (2) from the result yields

k+1 k eit k
c~+ () ck~) -q q +ep ~ U

whence

Cpk I t) =(1+peltqk) ck(t) - qk >O),

cp0(t) =1,

Similarly, for the probability generating function#

k k
'k+ I( U) +pq U)rrf k(u) -pq. (3)

A. To get an exprestni. 'or tpk(t) write Pk(t) =e itkVt) - 1, Then one

gets

Pk+I t) P~t)1 pqk eit

Since POMt = e i-1I we have

Pk(t) j=et 0).~l( +p~1

and hence

k(t) e-i +(U1- e- )j=O Pe

B, Let Pk = EG k = W&k-1 Differentiating (3) and setting u 1 gives

=k+ pq k + (1+pqk~ak.

Writing (zk P 1k + 1 we get

(rk+1 Q (+pqk)uz2

. ._..__.__--_--_
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so that

and

= uk-i I~ p 1

Notice that regardless of the values of n and pt because of the arithmetic mean

-geometric mean inequality we have

2 k-I k
I1+ rk < Q + p Ul+q+q +...+q )/k)

-(I + U -qk)Ik)k

Q(1+ lUk)k

It follows that

rke for aflk 0, t,
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IV. Number of steps needed by random algorithm.

Let Rk be the number of steps from k to a sink using the random algorithm

k
on a Bern(n,p) graph. With probability q vertex k is a sink and R k = 0. With

probability 1-q k vertex k is not a sink; in this case by symmetry all vertices

of lower index than k have the same chance of being visited next. Accordingly

the characteristic function of Rk is

t eitRk) = qk + k- 1 -.q) o-k-l E(eit(R+l) )t
tt)k(t) = Eeitk)

i.eo

~ k + k 1 (I ,qk)i t 5-k-I$k(t) = qk j-,_ e =o 0~)

Similarly, the probability generating function is
XM=qk + i1'-q k)u -I

k - ~j=0 VU)

Hence, if pk = ERk = X'k(1) then P0 = 0 and

S(1 - qk)(1  + k -- l ")'

PC (1-1=0,3j)
A. To get a quick upper bound on pk (a better bound will be obtained in

B. below) we note that if a k is defined by the recurrence
-= -k-i

Cx l+k 0
- I x. (withr z=0),k j=0 I

then it is easy to show that 1k < a k and also that

(k+l)cxk+1 - kcrk = I + a k t

whence

a k a k-1 + 1/k .

Thus we have

k 1 /j - log k.
Pk 11/

B. For more precise estimates of p we write
k

ck jqk

so that

Pk=c(+ k-I5 k - 1.%l, -j=o0 (4

Putting k+1 in place of k in (4), subtracting (4) from the result, and
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simplifying, we find

=k+ r k+lpk + 'k+1'

where

r. = (c./c -)Q -j 1q)
j jj-

and

s.= C.,

It follows easily that

k'k + kk-1 + kk-lsk-2 + +rk-1 .. 11sl 5

Moreover:

s k

and in general

rk.oo +,~s1 j J q )(1-(k-) qk ),(1-(i+1)Iq) (6)

It follows easily that

pk(U- k. 1/j- -qk) log k.

A number of different lower bounds on Pk can be obtained from (5) and (6).

Among them are:

Sjk

and

pkj (I-qk)(2 +q 1log(1-q))5: I/
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V. Ogen problems

(There is no guarantee that any of the problems posed here are difficult,

or that their solutions will constitute major progress. There is also no

guarantee that any of them are well-posed or tractable.)

A. For the greedy algorithm, find a closed-form expression for the

characteristic function cpk(t) of the number Gk of steps from k to a sink. Also

find the variance of Gk, and get asymptotic values for the mean and variance.

Show that the expected value Vk is an increasing function of k, and also an

increasing function of p.

B. For the random algorithm, attempt to find a closed-form expression for

the characteristic function Ik(t) of the number Rk of steps from k to a sink.

Find a closed-form expression for the expected value Pkt and for the variance

as well. Find asymptotic expressions or bounds on these quantities. Show that

the expected value pk is increasing as a function of k and of p. Find an

asymptotic lower bound on pk (log k would be nice).

Co Look into controlling the number of sinks in the random graphs under

consideration, either by adjusting p as a function of n (probably this can be

done only with unreasonable values of p) or by changing the model somehow.

Look into threshold-function results for various behaviors: for example, is

there a threshold growth rate on p = Pn for boundedness of the sequence {Gk} ?
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